The Taconnaz Rockfall (Mont-Blanc Massif, European Alps) of November 2018: A Complex and At-Risk Rockwall-Glacier-Torrent Morphodynamic Continuum

Author:

Ravanel Ludovic1ORCID,Duvillard Pierre-Allain2,Astrade Laurent1,Faug Thierry3,Deline Philip1,Berthet Johan4,Cathala Maëva1ORCID,Magnin Florence1,Baratier Alexandre4,Bodin Xavier1

Affiliation:

1. EDYTEM, University Savoie Mont-Blanc, CNRS, 73000 Chambéry, France

2. Nāga Geophysics, Savoie Technolac, 73370 Le Bourget du Lac, France

3. University Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000 Grenoble, France

4. Styx4D, Savoie Technolac, 73370 Le Bourget du Lac, France

Abstract

The glacial and torrential basin of Taconnaz (Mont-Blanc massif, France) dominates the Chamonix valley. It is one of the major paths for snow avalanches in the Alps, often triggered by serac falls from the Taconnaz glacier. On 24 November 2018, the basin’s multi-risk nature was further accentuated by a new type of hazard with a rockfall triggered at c. 2700 m a.s.l. It travelled down over a distance of 1.85 km and stopped 165 m away from the construction site of a micro-hydroelectric power station. We studied the triggering conditions at the permafrost lower limit, the effects of the supra-glacial path on the flow patterns, and the fate of the scar and the deposit on torrential activity. By comparing a pre-event Structure from Motion model with a post-event LiDAR model, we estimated the volume of the scar to be 42,900 m3 (±5%). A numerical model was employed to simulate the rapid runout. It revealed the complexity of the flow, attributed to the sequestration of a part of the deposit in crevasses, the incorporation of a significant volume of ice resulting in a transition from a dry granular flow to a mud-like flow, and the presence of numerous deposit zones. Subsequent monitoring of the area after the event allowed for the documentation of the scar’s evolution, including a landslide, as well as the progressive degradation and evacuation of the deposit by the torrent without producing debris flow. The study of the triggering factors indicated glacial retreat as the probable main cause, assisted by the melting of ice lenses left by the permafrost disappearance. Finally, we present replicable methods for managing risks at the site following the event. This event improves the understanding of cascading processes that increasingly impact Alpine areas in the context of climate change.

Funder

EU POIA PermaRisk project

Direction Générale de la Prévention des Risques (DGPR) of the French Ministry in Charge of the Environment

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3