Affiliation:
1. Key Laboratory of Electric Drive and Control of Anhui Higher Education Institutes, Anhui Polytechnic University, Wuhu 241000, China
2. Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Anhui Polytechnic University, Wuhu 241000, China
Abstract
In this work, the finite-time asymptotic tracking control problem of uncertain multi-agent systems with unknown control gains is studied. For the unknown control gain of each subsystem in multi-agent systems, we consider using the Nussbaum gain function techniques to handle them. To deal with the unknown uncertain nonlinear dynamics, the radial basis function neural network is introduced in each step of the dynamic surface control design. In addition, a nonlinear compensating term with the estimation of an unknown bounded parameter is designed to avoid repeated differentiation of each virtual control law. Then, based on the neural network control method, dynamic surface control technique, and finite-time control theory, an adaptive neural network finite-time dynamic surface control law is finally designed. Using stability analysis, it is proven that the presented adaptive control law can guarantee all signals of the closed-loop system semi-global practical finite-time stable, and the tracking error of each follower agent can converge to a small neighborhood of zero in finite time. Finally, a class of single-link robot systems is provided to illustrate the effectiveness of the designed control law.
Funder
National Undergraduate Innovation and Entrepreneurship Training Program of Anhui Polytechnic University
Opening Project of Automotive New Technique of Anhui Province Engineering Technology Research Center
Program for the Top Talents of Anhui Polytechnic University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science