Low-Light Image Enhancement Method for Electric Power Operation Sites Considering Strong Light Suppression

Author:

Xi Yang1,Zhang Zihao1,Wang Wenjing1

Affiliation:

1. School of Computer Science, Northeast Electric Power University, Jilin 132012, China

Abstract

Insufficient light, uneven light, backlighting, and other problems lead to poor visibility of the image of an electric power operation site. Most of the current methods directly enhance the low-light image while ignoring local strong light that may appear in the electric power operation site, resulting in overexposure and a poor enhancement effect. Aiming at the above problems, we propose a low-light image enhancement method for electric power operation sites by considering strong light suppression. Firstly, a sliding-window-based strong light judgment method was designed, which used a sliding window to segment the image, and a brightness judgment was performed based on the average value of the deviation and the average deviation of the subimages of the grayscale image from the strong light threshold. Then, a light effect decomposition method based on a layer decomposition network was used to decompose the light effect of RGB images with the presence of strong light and eliminate the light effect layer. Finally, a Zero-DCE (Zero-Reference Deep Curve Estimation) low-light enhancement network based on a kernel selection module was constructed to enhance the low-light images with reduced or no strong light interference. Comparison experiments using the electric power operation private dataset and the SICE (Single Image Contrast Enhancement) Part 2 public dataset showed that our proposed method outperformed the current state-of-the-art low-light enhancement methods in terms of both subjective visual effects and objective evaluation metrics, which effectively improves the image quality of electric power operation sites in low-light environments and provides excellent image bases for other computer vision tasks, such as the estimation of operators’ posture.

Funder

Jilin Scientific and Technological Development Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3