SJBCD: A Java Code Clone Detection Method Based on Bytecode Using Siamese Neural Network

Author:

Wan Bangrui12,Dong Shuang1,Zhou Jianjun1,Qian Ying12

Affiliation:

1. School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Chongqing Engineering Research Center of Software Quality Assurance, Testing and Assessment, Chongqing 400065, China

Abstract

Code clone detection is an important research topic in the field of software engineering. It is significant in developing software and solving software infringement disputes to discover code clone phenomenon effectively in and between software systems. In practical engineering applications, clone detection can usually only be performed on the compiled code due to the unavailability of the source code. Additionally, there is room for improvement in the detection effect of existing methods based on bytecode. Based on the above reasons, this paper proposes a novel code clone detection method for Java bytecode: SJBCD. SJBCD extracts opcode sequences from byte code files, use GloVe to vectorize opcodes, and builds a Siamese neural network based on GRU to perform supervised training. Then the trained network is used to detect code clones. In order to prove the effectiveness of SJBCD, this paper conducts validation experiments using the BigCloneBench dataset and provides a comparative analysis with four other methods. Experimental results show the effectiveness of the SJBCD method.

Funder

Chongqing Construction Science and technology plan project of Chongqing Housing and Urban-Rural Development Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3