Self-Start Characteristics of Hypersonic Inlet When Multiple Unstart Modes Exist

Author:

Tang Xiao1,Xiong Bing1,Fan Xiaoqiang1,Wang Liang1

Affiliation:

1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Abstract

Intense shock boundary-layer interaction may lead to multiple unstart modes existing in a hypersonic inlet. Thus, self-start problems become complex and cannot be explained using the classical double-solution theory of air inlet. The essence of the self-start process of a hypersonic inlet is the vanishment of separations near or in the inlet. To clarify self-start characteristics, experiments were conducted on three distinct types of unstart mode: the flow mode of small separation on body (SSB), large separation on body (LSB), and dual separations on both body and lip (DSBL); researchers recently discovered these as the unstart modes of hypersonic inlet. The results from the current experiment are as follows: (1) The SSB vanishes by raising the angle of attack (alpha). Before the vanishing point is reached, there is a dwindling process for this separation. (2) The LSB vanishes through acceleration or a decreasing alpha. (3) DSBL are difficult to vanish directly, which results in poor self-start performance. However, the DSBL flow mode may convert to LSB unstart form—which is easier to self-start—by decreasing the alpha. The Flow Field Reconstruction Method was designed to improve the self-start of the DSBL flow mode, and it was validated through experiments. Analysis of the flow mechanism revealed the reason for the poor self-start performance of the DSBL unstart mode: large-scale separation on the lip side cannot be promoted to vanish through broadwise spillage due to the resistance of sideboards. The results of this study could greatly enrich the existing theory of start problems for hypersonic inlets.

Funder

National Natural Science Foundation of China

NUDT Research Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3