Hot Melt Extrusion as a Formulation Method of Terpolymer Rods with Aripiprazole: A Preliminary Study

Author:

Wilińska Justyna1,Turek Artur1ORCID,Rech Jakub2ORCID,Janeczek Henryk3,Pastusiak Małgorzata3ORCID,Kordyka Aleksandra3ORCID,Borecka Aleksandra3,Kobielarz Magdalena4,Kasperczyk Janusz13ORCID

Affiliation:

1. Chair and Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland

2. Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland

3. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland

4. Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

Aripiprazole (ARP) is an atypical neuroleptic used in the therapy of mental diseases such as schizophrenia. The lack of optimal adherence to an oral therapy regime creates the basis for designing ARP long-acting injections. This study aimed to use 105 °C hot melt extrusion (HME) as a formulation method for rods based on poly(d,l-lactide-co-glycolide-co-trimethylene carbonate) with a molecular weight (Mn) of 21 kDa (Td,l 21), poly(l-lactide-co-glycolide-co-trimethylene carbonate) with a Mn of 59 kDa (Tl 59), and with a Mn of 77 kDa (Tl 77). The following methods were involved in the research: NMR, DSC, XRD, HSM, FTIR, GPC, SEM, and mechanical tests. HME at 105 °C (i) ensured flow behavior for terpolymers, (ii) did not influence the terpolymers’ composition and (iii) the polymorph changes of ARP, and (iv) resulted in the changes in terpolymers’ Mn. For the rods with ARP based on Td,l 21 (Td,l 21 rod-ARP) and Tl 59 (Tl 59 rod-ARP), plasticization was noted. No drug–terpolymer interactions were revealed. No pores were observed on the surface. Due to its high flexibility and rubber character, Td,l 21 rod-ARP may be proposed for intramuscular administration, whereas Tl 59 rod-ARP, due to its higher strength and moderate stiffness, is proposed for subcutaneous administration.

Funder

Medical University of Silesia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3