Effective Equations for the Optimum Seismic Gap Preventing Earthquake-Induced Pounding between Adjacent Buildings Founded on Different Soil Types

Author:

Miari Mahmoud1ORCID,Jankowski Robert1ORCID

Affiliation:

1. Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. Narutowicza 11/12, 80-233 Gdańsk, Poland

Abstract

The best approach to avoid collisions between adjacent structures during earthquakes is to provide sufficient spacing between them. However, the existing formulas for calculating the optimum seismic gap preventing pounding were found to provide inaccurate results upon the consideration of different soil types. The aim of this paper is to propose new equations for the evaluation of the sufficient in-between separation gap for buildings founded on different soil conditions. The double-difference formula has been taken into account in this study. The seismic gap depends on the correlation factor and on the top displacements of adjacent buildings. The correlation factor depends on the ratio of the periods of adjacent buildings (smaller period to larger period). The modification of the correlation factor has been introduced for buildings founded on five different soil types. Five soil types were taken into account in this study, as defined in the ASCE 7-10 code, i.e., hard rock, rock, very dense soil and soft rock, stiff soil, and soft clay soil. The normalized root mean square errors have been calculated for the proposed equations. The results of the study indicate that the error ranges between 2% and 14%, confirming the accuracy of the approach. Therefore, the proposed equations can be effectively used for the determination of the optimum seismic gap preventing earthquake-induced pounding between buildings founded on different soil types.

Funder

Gdańsk University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3