Improved Technology for Rounding Graphite: Machine Structure and Industrial Test

Author:

Chen Jundong1,Ma Tingting2,Lu Yan1,Wang Jianbo2,Zhang Mingxing1,Lin Longyuan1,Yan Cuiping1,Li Xue1,Chen Haiyan1

Affiliation:

1. Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, School of Environment and Resource, Sichuan Provincial Engineering Laboratory of Non-Metallic Mineral Powder Modification and High-Value Utilization, Southwest University of Science and Technology, Mianyang 621010, China

2. School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

The graphite, which is treated to be potato-shaped, is widely applied in Li-ion batteries as the anodic material. Sequential batch shaping is the main method at present. However, the small height of the shaping cavity of the existing structure leads to the problem of low processing capacity and high cost. In this work, a new structure of the shaping machine was developed with the aim of shaping graphite by large output and costless. The equipment system for graphite rounding in a pilot scale at a treatment amount of 25 kg raw material each run was established. The results showed that the ratio of the diameters of the final product by an undersized percentage corresponding to 10% was 11.15 μm, 50% was 18.94 μm, and 90% was 29.54 μm, and tap density was 0.945 g/cm3, the yield reached 48%, under the optimized conditions of 1833 rpm rotating speed of shaping disk, 2646 rpm rotating speed of classifier, and 40 min shaping period. All the above characteristics of the rounded graphite are in line with the requirements for applying in the anode of Li-ion batteries. In short, the present study aims to provide a new structure of the shaping machine, contributing to the efficient and cost-effective rounding of graphite and revealing the structure of the shaping machine, contributing to promoting the wide improvement of the shaping machine.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3