Soft Semi-Supervised Deep Learning-Based Clustering

Author:

AlZuhair Mona Suliman1,Ben Ismail Mohamed Maher1,Bchir Ouiem1ORCID

Affiliation:

1. Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia

Abstract

Semi-supervised clustering typically relies on both labeled and unlabeled data to guide the learning process towards the optimal data partition and to prevent falling into local minima. However, researchers’ efforts made to improve existing semi-supervised clustering approaches are relatively scarce compared to the contributions made to enhance the state-of-the-art fully unsupervised clustering approaches. In this paper, we propose a novel semi-supervised deep clustering approach, named Soft Constrained Deep Clustering (SC-DEC), that aims to address the limitations exhibited by existing semi-supervised clustering approaches. Specifically, the proposed approach leverages a deep neural network architecture and generates fuzzy membership degrees that better reflect the true partition of the data. In particular, the proposed approach uses side-information and formulates it as a set of soft pairwise constraints to supervise the machine learning process. This supervision information is expressed using rather relaxed constraints named “should-link” constraints. Such constraints determine whether the pairs of data instances should be assigned to the same or different cluster(s). In fact, the clustering task was formulated as an optimization problem via the minimization of a novel objective function. Moreover, the proposed approach’s performance was assessed via extensive experiments using benchmark datasets. Furthermore, the proposed approach was compared to relevant state-of-the-art clustering algorithms, and the obtained results demonstrate the impact of using minimal previous knowledge about the data in improving the overall clustering performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3