A Method for Extracting a Laser Center Line Based on an Improved Grayscale Center of Gravity Method: Application on the 3D Reconstruction of Battery Film Defects

Author:

Yao Rongbin1,Wang Baiyi2,Hu Mengya2,Hua Dezheng2ORCID,Wu Lequn2,Lu He1,Liu Xinhua2

Affiliation:

1. Lianyungang Normal College, Lianyungang 222006, China

2. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Extraction of the laser fringe center line is a key step in the 3D reconstruction of linear structured light, the accuracy of which is directly related to the quality of the 3D model. A laser center line extraction method based on an improved gray center of gravity method is proposed to solve the problem of low extraction accuracy. Firstly, a smoothing method is used to eliminate the flat top of the laser line, and the Gaussian curve is adopted to fit the peak position of the curve. Then, the gray threshold is set to automatically extract the laser linewidth, and based on the window opening, the grayscale center of gravity method is improved to extract the coordinates of the center pixel for the second time. Finally, experiments show that the average absolute error of the improved laser line extraction method is 0.026 pixels, which is 2.3 times lower than the gray center of gravity method, 1.9 times lower than the curve fitting method, and the standard error can reach 0.005 pixels. Compared with the gray center of gravity method and the curve fitting method, the influence of gray value change on the center line extraction is more fully considered, and the center of the light strip can be extracted more accurately, achieving sub-pixel accuracy.

Funder

Lianyungang 521 High-level Talent Training Project

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3