Efficient Resource Allocation in Blockchain-Assisted Health Care Systems

Author:

Alfakeeh Ahmed S.1ORCID,Javed Muhammad Awais2ORCID

Affiliation:

1. Department of Information Systems, King Abdul Aziz University, Jeddah 21589, Saudi Arabia

2. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad 4550, Pakistan

Abstract

Smart health care will be a major application in future smart cities. Timely and precise delivery of patients’ data to their medical consultant, to allow the necessary actions, is one of the basic needs in health care systems. Blockchain technology, with the provisioning of recording and tracking of data blocks, guarantees secure and error-free data delivery. The vital sign data from patients’ sensors are placed in different data blocks. To become a part of the blockchain, the block must contain a valid key, based on a hash function. Mining nodes with high processing capabilities generate the required key using a 32-bit number, known as a nonce, which is changed for every new block. Finding a nonce that meets the hash function requirements is a time-intensive process in blockchain technology and is performed by several fog mining nodes. However, an efficient resource allocation that results in the fair placement of data in these fog mining nodes, while maintaining the priority and sensitivity of patients’ data, is a challenge. This work proposes two algorithms for the resource allocation of mining nodes. The first algorithm uses a load balancing technique to distribute the load of nonce computing tasks. The second algorithm utilizes the knapsack algorithm to allocate the caching space of the mining nodes. The simulation results highlighted that the proposed resource allocation techniques outperformed the existing techniques, in terms of quick mining of the most sensitive patient data blocks.

Funder

Ministry of Education and King Abdulaziz University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Robotic Process Automation and Blockchain can Work Together?;2024 International Conference on E-mobility, Power Control and Smart Systems (ICEMPS);2024-04-18

2. Smart City Actions Integrated into Urban Planning: Management of Urban Environments by Thematic Areas;Applied Sciences;2024-04-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3