Use of Ensemble Learning to Improve Performance of Known Convolutional Neural Networks for Mammography Classification

Author:

Berrones-Reyes Mayra C.1ORCID,Salazar-Aguilar M. Angélica1ORCID,Castillo-Olea Cristian2ORCID

Affiliation:

1. Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Cd. Universitaria, San Nicolás de los Garza 66455, Mexico

2. Facultad de Ingeniería, CETYS Universidad Campus Mexicali, Calzada CETYS s/n, Colonia Rivera, Mexicali 21259, Mexico

Abstract

Convolutional neural networks and deep learning models represent the gold standard in medical image classification. Their innovative architectures have led to notable breakthroughs in image classification and feature extraction performance. However, these advancements often remain underutilized in the medical imaging field due to the scarcity of sufficient labeled data which are needed to leverage these new features fully. While many methodologies exhibit stellar performance on benchmark data sets like DDSM or Minimias, their efficacy drastically decreases when applied to real-world data sets. This study aims to develop a tool to streamline mammogram classification that maintains high reliability across different data sources. We use images from the DDSM data set and a proprietary data set, YERAL, which comprises 943 mammograms from Mexican patients. We evaluate the performance of ensemble learning algorithms combined with prevalent deep learning models such as Alexnet, VGG-16, and Inception. The computational results demonstrate the effectiveness of the proposed methodology, with models achieving 82% accuracy without overtaxing our hardware capabilities, and they also highlight the efficiency of ensemble algorithms in enhancing accuracy across all test cases.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3