Optimization Method of Assembly Tolerance Types Based on Degree of Freedom

Author:

Liu Guanghao12,Huang Meifa1,Chen Leilei1

Affiliation:

1. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. Liuzhou Vocational and Technical College, Liuzhou 545005, China

Abstract

The automatic generation of tolerance specifications is an important aspect of achieving digital product design. An obvious feature of the current automatic generation of tolerance based on rule reasoning is that all tolerance types will be inferred for the same assembly feature. However, when labelling part tolerance information, designers need to further screen based on the geometric function of the assembly, which may result in prioritizing tolerance types that do not meet the geometric requirements of the assembly. This paper presents an assembly tolerance type optimization method based on the degree of freedom (DOF) of tolerance zone for the optimization and screening problem after reasoning all possible tolerance types. Firstly, we define the DOF of tolerance zones and their representations, while also define the control parameter degrees of freedom (CPDF) of assemblies, and analyze the CPDF of typical geometric functional tolerances of assemblies; Secondly, the Boolean operation relationship between sets is used to construct a Boolean operation preference method for the CPDF. Then, an algorithm for the optimal selection of the shape and position tolerance items of the assembly is established based on the DOFs of tolerance zone. Finally, the proposed method is verified by an engineering example, and the result shows that the method can optimize and screen the geometric tolerance types of assemblies.

Funder

National Natural Science Foundation of China

Project on Enhancement of Basic Research Ability of Young and Middle-aged Teachers in Universities and Colleges of Guangxi

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3