Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision

Author:

Del Savio Alexandre Almeida1ORCID,Luna Torres Ana1ORCID,Cárdenas Salas Daniel1,Vergara Olivera Mónica Alejandra1ORCID,Urday Ibarra Gianella Tania1ORCID

Affiliation:

1. Scientific Research Institute (IDIC), Universidad de Lima, Lima 15023, Peru

Abstract

The introduction of artificial intelligence methods and techniques in the construction industry has fostered innovation and constant improvement in the automation of monitoring and control processes at construction sites, although there are areas where more studies still need to be conducted. This paper proposes a method to determine the criticality of cracks in concrete samples. The proposed method uses a previously trained YOLOv4 neural network to identify concrete cracks. Then, the region of interest, determined by the bounding box resulting from the neural network model classification, is extracted. Finally, the extracted image is converted to negative grayscale to quantify the number of white pixels above a certain threshold, automatically allowing the system to characterize the fracture’s extent and criticality. The classification module reached a veracity between 98.36% and 99.75% when identifying five concrete crack types of failures in 1132 images. A qualitative analysis of the results obtained from the characterization module shows a promising alternative to evaluate the criticality of concrete cracks.

Funder

Scientific Research Institute (IDIC) of Universidad de Lima

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Termografía infrarroja en la edificación: Aplicaciones cualitativas;Hongn;Avances Energías Renovables Medio Ambiente-AVERMA,2012

2. Factores influyentes en la calidad del concreto: Una encuesta a los actores relevantes de la industria del hormigón;Orozco;Revista Ingeniería Construcción,2018

3. A real-time detection approach for bridge cracks based on YOLOv4-FPM;Yu;Autom. Constr.,2021

4. Del Savio, A.A., Luna, A., Cárdenas-Salas, D., Vergara Olivera, M., and Urday Ibarra, G. (2021, January 12–13). The use of artificial intelligence to identify objects in a construction site. Proceedings of the International Conference on Artificial Intelligence and Energy Systems (ICAIES) in Virtual Mode, Jaipur, India.

5. Dataset of manually classified images obtained from a construction site;Luna;Data Brief,2022

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3