Attention-Based Mechanism and Adversarial Autoencoder for Underwater Image Enhancement

Author:

Luo Gaosheng1ORCID,He Gang1,Jiang Zhe1,Luo Chuankun1

Affiliation:

1. Shanghai Engineering Research Center of Hadal Science and Technology, College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

Abstract

To address the phenomenon of color shift and low contrast in underwater images caused by wavelength- and distance-related attenuation and scattering when light propagates in water, we propose a method based on an attention mechanism and adversarial autoencoder for enhancing underwater images. Firstly, the pixel and channel attention mechanisms are utilized to extract rich discriminative image information from multiple color spaces. Secondly, the above image information and the original image reverse medium transmittance map are feature-fused by a feature fusion module to enhance the network response to the image quality degradation region. Finally, the encoder learning is guided by the adversarial mechanism of the adversarial autoencoder, and the hidden space of the autoencoder is continuously approached to the hidden space of the pre-trained model. The results of the experimental images acquired from the Beihai Bay area of China on the HYSY-163 platform show that the average value of the Natural Image Quality Evaluator is reduced by 27.8%, the average value of the Underwater Color Image Quality Evaluation is improved by 28.8%, and the average values of the Structural Similarity and Peak Signal-to-Noise Ratio are improved by 35.7% and 42.8%, respectively, compared with the unprocessed real underwater images, and the enhanced underwater images have improved clarity and more realistic colors. In summary, our network can effectively improve the visibility of underwater target objects, especially the quality of images of submarine pipelines and marine organisms, and is expected to be applied in the future with underwater robots for pile legs of offshore wellhead platforms and large ship bottom sea life cleaning.

Funder

National Key Research and Development Program of China

Shanghai Municipal Science and Technology Commission Innovation Action Plan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3