Fuzzy Multivariate Regression Models for Seismic Assessment of Rocking Structures

Author:

Gkountakou Fani I.1,Bantilas Kosmas E.2ORCID,Kavvadias Ioannis E.2ORCID,Elenas Anaxagoras2,Papadopoulos Basil K.1ORCID

Affiliation:

1. Department of Civil Engineering, Institute of Mathematics and Informatics, Democritus University of Thrace, 67100 Xanthi, Greece

2. Department of Civil Engineering, Institute of Structural Statics and Dynamics, Democritus University of Thrace, 67100 Xanthi, Greece

Abstract

The assessment of rocking response is a challenging task due to its high nonlinearity. The present study investigates two methodologies to evaluate finite rocking rotations and overturn of three typical rocking systems. In particular, fuzzy linear regression (FLR) with triangular fuzzy numbers and a hybrid model combining logistic regression and fuzzy logic were adopted. To this end, three typical rocking structures were considered, and nonlinear time history analyses were performed to obtain their maximum response. Eighteen seismic intensity measures (IMs) extracted from recorded seismic accelerograms were considered to predict the responses. In the absence of rocking overturn, the finite rocking rotations and similarity ratios were calculated by adopting the FLR method. Moreover, extensive analysis was performed to evaluate the influence of each IM on the model’s predictions. On the other hand, rocking overturn was evaluated by logistic regression to compute the probability of collapse, followed by the FLR method to estimate the similarity between the different rocking-based structural systems. The root mean square error (RMSE) parameter and the log loss function were determined for every model to assess the predictions that emerged from the two fuzzy methods. As indicated, both methods demonstrated satisfactory results, presenting minimal deviations from the observed values. Finally, in the case of finite rocking rotation predictive models, remarkably high similarity ratios were observed among the various structures, with a median value of 0.96.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3