Closely-Spaced Repetitions of CAMTA Trans-Factor Binding Sites in Promoters of Model Plant MEP Pathway Genes

Author:

Szymczyk Piotr1ORCID

Affiliation:

1. Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland

Abstract

Previous research has demonstrated the presence of two closely spaced repetitions of the rapid stress-responsive cis-active element RSRE (G/A/C)CGCG(C/G/T) in the 5′UTR of S. miltiorrhiza2C-methyl-D-erithrytol 2,4-cyclodiphosphate synthase (MECPS) gene. The product of MECPS activity, represented by 2C-methyl-D-erithrytol 2,4-cyclodiphosphate (MECPD), indicates its retrograde regulatory role and activates CAMTA trans-factors. Since the complete activation of CAMTA trans-factors requires the cooperative interaction of CAMTA3 with CAMTA2 or CAMTA4, the closely spaced RSREs recognized by CAMTA trans-factors could be used to promote CAMTA trans-factor dimerization. The present study aims to evaluate if the occurrence of these two closely spaced RSREs in the 5′UTR is specific to S. miltiorrhiza or could be observed in other MECPS genes. An analysis of nineteen MECPS gene sequences from seven selected model plants indicated the closely spaced repetition of RSREs in the 5′UTR region of two maize (Zea mays) MECPS genes, Zm00001d051458 and Zm00001d017608. This observation suggests the potential autoregulatory function of MECPD in relation to the MECPS transcription rate. Moreover, an analysis of eighty-five promoter regions of other plastidial methyl-D-erythritol phosphate (MEP) pathway genes indicated such closely spaced RSREs in the proximal promoter of Zea mays2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (CMS) (Zm00001d012197) and Oryza sativa4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) (Os03t0732000-00).

Funder

statutory funds of the Department of Biology and Pharmaceutical Botany at the Medical University of Łódź

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3