Kinetics of Ions in Post-Lithium Batteries

Author:

Sgourou Efstratia N.1,Daskalopulu Aspassia2ORCID,Tsoukalas Lefteri H.3,Goulatis Ioannis L.2,Vovk Ruslan V.4,Chroneos Alexander25ORCID

Affiliation:

1. Solid State Physics Section, University of Athens, Panepistimiopolis Zografos, 15784 Athens, Greece

2. Department of Electrical and Computer Engineering, University of Thessaly, 38333 Volos, Greece

3. School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA

4. Department of Physics, V. N. Karazin Kharkiv National University, 4 Svobody sq., 61077 Kharkiv, Ukraine

5. Department of Materials, Imperial College London, London SW7 2BP, UK

Abstract

There is a technological necessity for more efficient, abundant, and sustainable materials for energy storage applications. Lithium-ion batteries dominate, however, there are a number of sustainability, economic, and availability issues that require the investigation of post-lithium batteries. In essence, the drive is to move to non-lithium-containing batteries as there is simply not enough lithium available to satisfy demand in a few years. To find alternative ions migrating at appropriate rates in crystal lattices requires significant research efforts and, in that respect, computational modeling can accelerate progress. The review considers recent mainly theoretical results highlighting the kinetics of ions in post-lithium oxides. It is proposed that there is a need for chemistries and ionic species that are sustainable and abundant and in that respect sodium, magnesium, and oxygen ion conduction in batteries is preferable to lithium. The limitations and promise of these systems are discussed in view of applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3