A High–Efficiency Side–Scan Sonar Simulator for High–Speed Seabed Mapping

Author:

Meng Xiangjian12ORCID,Xu Wen13ORCID,Shen Binjian12,Guo Xinxin1

Affiliation:

1. Institute of Deep–Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Ocean College, Zhejiang University, Zhoushan 316021, China

Abstract

Side scan sonar (SSS) is a multi–purpose ocean sensing technology, but due to the complex engineering and variable underwater environment, its research process often faces many uncertain obstacles. A sonar simulator can provide reasonable research conditions for guiding development and fault diagnosis, by simulating the underwater acoustic propagation and sonar principle to restore the actual experimental scenarios. However, the current open–source sonar simulators gradually lag behind mainstream sonar technology; therefore, they cannot be of sufficient assistance, especially due to their low computational efficiency and unsuitable high–speed mapping simulation. This paper presents a sonar simulator based on a two–level network architecture, which has a flexible task scheduling system and extensible data interaction organization. The echo signal fitting algorithm proposes a polyline path model to accurately capture the propagation delay of the backscattered signal under high–speed motion deviation. The large–scale virtual seabed is the operational nemesis of the conventional sonar simulators; therefore, a modeling simplification algorithm based on a new energy function is developed to optimize the simulator efficiency. This paper arranges several seabed models to test the above simulation algorithms, and finally compares the actual experiment results to prove the application value of this sonar simulator.

Funder

the Strategic Priority Research Program (A) of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3