Small-Diameter Subchondral Drilling Improves DNA and Proteoglycan Content of the Cartilaginous Repair Tissue in a Large Animal Model of a Full-Thickness Chondral Defect

Author:

Orth Patrick,Eldracher Mona,Cucchiarini Magali,Madry HenningORCID

Abstract

This study quantified changes in the DNA content and extracellular matrix composition of both the cartilaginous repair tissue and the adjacent cartilage in a large animal model of a chondral defect treated by subchondral drilling. Content of DNA, proteoglycans, and Type II and Type I collagen, as well as their different ratios were assessed at 6 months in vivo after treatment of full-thickness cartilage defects in the femoral trochlea of adult sheep with six subchondral drill holes, each of either 1.0 mm or 1.8 mm in diameter by biochemical analyses of the repair tissue and the adjacent cartilage and compared with the original cartilage. Only subchondral drilling which were 1.0 mm in diameter significantly increased both DNA and proteoglycan content of the repair tissue compared to the original cartilage. DNA content correlated with the proteoglycan and Type II collagen content within the repair tissue. Significantly higher amounts of Type I collagen within the repair tissue and significantly increased DNA, proteoglycan, and Type I collagen content in the adjacent cartilage were identified. These translational data support the use of small-diameter bone-cutting devices for marrow stimulation. Signs of early degeneration were present within the cartilaginous repair tissue and the adjacent cartilage.

Publisher

MDPI AG

Subject

General Medicine

Reference51 articles.

1. A method of resurfacing osteoarthritic knee Joints;Pridie;J. Bone Jt. Surg. (Br.),1959

2. Surgical management of articular cartilage defects of the knee;Gomoll;J. Bone Jt. Surg. Am.,2010

3. The Evidence for Surgical Repair of Articular Cartilage in the Knee

4. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage.

5. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3