A Copper Silicate-Based Multifunctional Nanoplatform with Glutathione Depletion and Hypoxia Relief for Synergistic Photodynamic/Chemodynamic Therapy

Author:

Shao Meiqi12,Zhang Wei3ORCID,Wang Fu2ORCID,Wang Lan3ORCID,Du Hong1

Affiliation:

1. Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials & Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China

2. Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen 518057, China

3. Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

Abstract

Chemodynamic therapy (CDT) alone cannot achieve sufficient therapeutic effects due to the excessive glutathione (GSH) and hypoxia in the tumor microenvironment (TME). Developing a novel strategy to improve efficiency is urgently needed. Herein, we prepared a copper silicate nanoplatform (CSNP) derived from colloidal silica. The Cu(II) in CSNP can be reduced to Cu(I), which cascades to induce a subsequent CDT process. Additionally, benefiting from GSH depletion and oxygen (O2) generation under 660 nm laser irradiation, CSNP exhibits both Fenton-like and hypoxia-alleviating activities, contributing to the effective generation of superoxide anion radical (•O2−) and hydroxyl radical (•OH) in the TME. Furthermore, given the suitable band-gap characteristic and excellent photochemical properties, CSNP can also serve as an efficient type-I photosensitizer for photodynamic therapy (PDT). The synergistic CDT/PDT activity of CSNP presents an efficient antitumor effect and biosecurity in both in vitro and in vivo experiments. The development of an all-in-one nanoplatform that integrates Fenton-like and photosensing properties could improve ROS production within tumors. This study highlights the potential of silicate nanomaterials in cancer treatment.

Funder

Shenzhen Science and Technology Program

Shenzhen Science and Technology Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3