Crystal Structure, Infrared Reflection Spectrum, and Improved Microwave Dielectric Characteristics of Ba4Sm28/3Ti18O54 Ceramics via One-Step Reaction Sintering

Author:

Li Zeping12,Zhou Huajian12,Xiong Gang12,Wang Huifeng12,Wang Geng12

Affiliation:

1. School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China

2. Key Laboratory of Photoelectric Sensing and Intelligent Control, Hubei University of Science and Technology, Xianning 437100, China

Abstract

High-k Ba4Sm28/3Ti18O54 ceramics with improved microwave dielectric characteristics were successfully fabricated using the one-step reaction sintering (RS) route. The sintering characteristics, microstructure, crystal structure, infrared reflection spectrum, and microwave dielectric characteristics of Ba4Sm28/3Ti18O54 ceramics prepared by the RS route were systematically investigated. Samples prepared by the RS route exhibited single-phase orthorhombic tungsten–bronze structure and dense microstructure at optimum sintering temperature. Compared with the conventional solid-state (CS) process, the Ba4Sm28/3Ti18O54 ceramics fabricated by the RS route presented a smaller temperature coefficient (TCF), a higher quality factor (Q × f), and a higher permittivity (εr). The improved microwave dielectric characteristics were highly dependent on the theoretical permittivity, atomic packing fraction, suppression of Ti3+, and Ti-site bond valence. Excellent combined microwave dielectric characteristics (TCF = −7.9 ppm/°C, Q × f = 9519 GHz, εr = 80.26) were achieved for Ba4Sm28/3Ti18O54 ceramics prepared by RS route sintered at 1400 °C, suggesting the RS route was a straightforward, economical and effective route to prepare high-performance Ba4Sm28/3Ti18O54 ceramics with promising application potential.

Funder

Foundation of Hubei Provincial Department of Education

Hubei Province Natural Science Foundation of China

Ph.D. foundation

Innovation and Entrepreneurship Training Programme for University Students

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3