Comparative Analysis of Machine Learning Models for Predicting the Mechanical Behavior of Bio-Based Cellular Composite Sandwich Structures

Author:

Sheini Dashtgoli Danial12ORCID,Taghizadeh Seyedahmad3ORCID,Macconi Lorenzo3ORCID,Concli Franco3ORCID

Affiliation:

1. Department of Mathematics, Informatics and Geosciences, University of Trieste, 34128 Trieste, Italy

2. National Institute of Oceanography and Applied Geophysics-OGS, 34010 Sgonico, Italy

3. Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Universität 5, 39100 Bolzano, Italy

Abstract

The growing demand for sustainable materials has significantly increased interest in biocomposites, which are made from renewable raw materials and have excellent mechanical properties. The use of machine learning (ML) can improve our understanding of their mechanical behavior while saving costs and time. In this study, the mechanical behavior of innovative biocomposite sandwich structures under quasi-static out-of-plane compression was investigated using ML algorithms to analyze the effects of geometric variations on load-bearing capacities. A comprehensive dataset of experimental mechanical tests focusing on compression loading was employed, evaluating three ML models—generalized regression neural networks (GRNN), extreme learning machine (ELM), and support vector regression (SVR). Performance indicators such as R-squared (R2), mean absolute error (MAE), and root mean square error (RMSE) were used to compare the models. It was shown that the GRNN model with an RMSE of 0.0301, an MAE of 0.0177, and R2 of 0.9999 in the training dataset, and an RMSE of 0.0874, MAE of 0.0489, and R2 of 0.9993 in the testing set had a higher predictive accuracy. In contrast, the ELM model showed moderate performance, while the SVR model had the lowest accuracy with RMSE, MAE, and R2 values of 0.5769, 0.3782, and 0.9700 for training, and RMSE, MAE, and R2 values of 0.5980, 0.3976 and 0.9695 for testing, suggesting that it has limited effectiveness in predicting the mechanical behavior of the biocomposite structures. The nonlinear load-displacement behavior, including critical peaks and fluctuations, was effectively captured by the GRNN model for both the training and test datasets. The progressive improvement in model performance from SVR to ELM to GRNN was illustrated, highlighting the increasing complexity and capability of machine learning models in capturing detailed nonlinear relationships. The superior performance and generalization ability of the GRNN model were confirmed by the Taylor diagram and Williams plot, with the majority of testing samples falling within the applicability domain, indicating strong generalization to new, unseen data. The results demonstrate the potential of using advanced ML models to accurately predict the mechanical behavior of biocomposites, enabling more efficient and cost-effective development and optimization processes in the field of sustainable materials.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3