An Approach to Improve Specimen Processing for the Flexural Strength Testing of Zirconia

Author:

Pandey Nashib12ORCID,Karlin Sabrina1ORCID,Bornstein Michael Marc3ORCID,Rohr Nadja1ORCID

Affiliation:

1. Biomaterials and Technology, Department Research, University Center for Dental Medicine Basel UZB, University of Basel, 4058 Basel, Switzerland

2. Department of Periodontics & Oral Implantology, College of Medical Sciences, Bharatpur 44207, Nepal

3. Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, 4058 Basel, Switzerland

Abstract

Measuring the flexural strength of restorative materials such as zirconia is crucial for providing proper indications for clinical applications and predicting performance. Great variations in specimen preparation for flexural strength measurements exist among laboratories. The aim was to evaluate how the processing method, surface treatment, and test method of the specimens affect the flexural strength of zirconia. Zirconia specimens (VITA YZ HT) (n = 270) were processed using CAD/CAM or were conventionally milled with three different surface treatments (machined, ground, polished) and were measured with three-point bending (non-chamfered/chamfered) or biaxial flexural strength test. Weibull statistics were conducted. The mean flexural strength values ranged from 612 MPa (conventional, machined, three-point bending non-chamfered) to 1143 MPa (CAD/CAM, polished, biaxial flexural strength). The highest reliability is achieved when specimens are prepared using thoroughly controllable processing with CAD/CAM and subsequently polished. Higher strength values are achieved with the biaxial flexural strength test method because the stress concentration in relation to the effective volume is smaller. Polishing reduces surface microcracks and therefore increases the strength values.

Funder

Vita Zahnfabrik, Bad Säckingen

Swiss Government Excellence Research Scholarship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3