On Morphology of Aluminum–Gallium Nitride Layers Grown by Halide Vapor Phase Epitaxy: The Role of Total Reactants’ Pressure and Ammonia Flow Rate

Author:

Jaroszynski Piotr1ORCID,Dabrowski Michal1,Sadovy Petro1,Bockowski Michal1,Czernecki Robert1ORCID,Sochacki Tomasz1ORCID

Affiliation:

1. Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland

Abstract

The focus of this study was the investigation of how the total pressure of reactants and ammonia flow rate influence the growth morphology of aluminum–gallium nitride layers crystallized by Halide Vapor Phase Epitaxy. It was established how these two critical parameters change the supersaturation levels of gallium and aluminum in the growth zone, and subsequently the morphology of the produced layers. A halide vapor phase epitaxy reactor built in-house was used, allowing for precise control over the growth conditions. Results demonstrate that both total pressure and ammonia flow rate significantly affect the nucleation and crystal growth processes which have an impact on the alloy composition, surface morphology and structural quality of aluminum–gallium nitride layers. Reducing the total pressure and adjusting the ammonia flow rate led to a notable enhancement in the homogeneity and crystallographic quality of the grown layers, along with increased aluminum incorporation. This research contributes to a deeper understanding of the growth mechanisms involved in the halide vapor phase epitaxy of aluminum–gallium nitride, and furthermore it suggests a trajectory for the optimization of growth parameters so as to obtain high-quality materials for advanced optoelectronic and electronic applications.

Funder

Polish National Science Center

Lider Project of the National Centre for Research and Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3