Investigation of the Potential of Repurposing Medium-Density Fiberboard Waste as an Adsorbent for Heavy Metal Ion Removal

Author:

Ranaweera Kavitha H.1ORCID,Grainger Megan N. C.1ORCID,French Amanda2ORCID,Sirimuthu Narayana3ORCID,Mucalo Michael1ORCID

Affiliation:

1. School of Science, University of Waikato, Hamilton 3240, New Zealand

2. Pacific Northwest National Laboratory, Richland, WA 99354, USA

3. Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka

Abstract

Medium-density fiberboard (MDF) waste generation has increased steadily over the past decades, and therefore, the investigation of novel methods to recycle this waste is very important. The potential of repurposing MDF waste as an adsorbent for the treatment of Cd(II), Cu(II), Pb(II), and Zn(II) ions in water was investigated using MDF offcuts. The highest adsorption potential in single-metal ion solution systems was observed for Pb(II) ions. The experimental data of Pb(II) ions fit well with the Freundlich isotherm and pseudo-second-order kinetic models. Complexation and electrostatic interactions were identified as the adsorption mechanisms. The adsorption behavior of multi-metal ion adsorption systems was investigated by introducing Cd(II) ions as a competitive metal ion. The presence of the Cd(II) ions reduced the adsorption potential of Pb(II) ions, yet the preference for the Pb(II) ions remained. Regeneration studies were performed by using 0.1 M HCl as a regeneration agent for both systems. Even though a significant amount of adsorbed metal ions were recovered, the adsorption potential of the MDF was reduced in the subsequent adsorption cycles. Based on these results, MDF fines have the potential to be used as an economical adsorbent for remediation of wastewater containing heavy metal ions.

Funder

University of Waikato doctoral scholarship for KR as well as a School of Science Student Trust

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3