Fabricating Spinel-Type High-Entropy Oxides of (Co, Fe, Mn, Ni, Cr)3O4 for Efficient Oxygen Evolution Reaction

Author:

Hao Xiaofei1ORCID,Wang Ran2,Tan Xiumin1,Zhang Xiufeng1,Liu Xupo2,Wu Zhaoyang1,Yuan Dongli1

Affiliation:

1. Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China

2. School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China

Abstract

Fabricating efficient oxygen evolution reaction (OER) electrocatalysts is crucial for water electrocatalysis. Herein, the spinel-type high-entropy oxides of (Co, Fe, Mn, Ni, Cr)3O4 were synthesized through the high-temperature calcination approach. The influences of calcination temperatures on structures and electrochemical properties were investigated. The optimized catalyst of HEO-900 contains the hybrid structure of regular polyhedrons and irregular nanoparticles, which is beneficial for the exposure of electrochemically active sites. It was identified that the abundant high-valence metal species of Ni3+, Co3+, Fe3+, Mn4+, and Cr3+ are formed during the OER process, which is generally regarded as the electrochemically active sites for OER. Because of the synergistic effect of multi-metal active sites, the optimized HEO-900 catalyst indicates excellent OER activity, which needs the overpotential of 366 mV to reach the current density of 10 mA cm−2. Moreover, HEO-900 reveals the prominent durability of running for 24 h at the current density of 10 mA cm−2 without clear delay. Therefore, this work supplies a promising route for preparing high-performance multi-metal OER electrocatalysts for water electrocatalysis application.

Funder

National Natural science Foundation of China

Ministry of Science and Technology of PRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3