Abstract
In this present study, we investigated the effect of photocatalyzation on the degradation of trichloroethylene (TCE) in the aqueous phase by a photocatalyst-coated plastic optical fiber (POF). Two light-emitting diodes (LEDs) with low light intensity were used as the light source and TiO2 and ZnO were used as photocatalysts, which were characterized by scanning electron microscope (SEM) and UV-Vis diffuse reflectance spectroscopy (DRS). The para-chlorobenzoic acid (pCBA) was used as the hydroxyl radical probe for kinetic study and for the calculation of hydroxyl radical conversion rate (ROH,UV ). Experimental results show that POF coated with TiO2 exhibited higher degradation efficiency of TCE in basic solution, but POF coated with ZnO performed better in acidic solution. The increase of coating times resulted in the decrease in degradation efficiency of TCE due to increased thickness of the photocatalyst layer. The enhancement of light intensity contributed to the improvement of photocatalytic treatment efficiency. The ROH,UV for TiO2 and ZnO coated POF increased from 2 × 103 to 8 × 103 M s cm2 mJ−1 and from 8 × 102 to 2 × 103 M s cm2 mJ−1, respectively, as the pH increased from 4 to 10.
Funder
Environmental Protection Administration, Executive Yuan, R.O.C. Taiwan
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献