Hyperspectral Estimation Model of Forest Soil Organic Matter in Northwest Yunnan Province, China

Author:

Chen Yun,Wang Jinliang,Liu GuangjieORCID,Yang Yanlin,Liu Zhiyuan,Deng Huan

Abstract

Soil organic matter (SOM) is an important index to evaluate soil fertility and soil quality, while playing an important role in the terrestrial carbon cycle. The technology of hyperspectral remote sensing is an important method to estimate SOM content efficiently and accurately. This study researched the best hyperspectral estimation model for SOM content in Shangri-La forest soil. The spectral reflectance of soils with sizes of 2 mm, 1 mm, 0.50 mm, and 0.25 mm were measured indoors. After smoothing and de-noising, the reciprocal reflectance (RR), logarithmic reflectance (LR), first-derivative reflectance (FR), reciprocal first-derivative reflectance (RFR), logarithmic first-derivative reflectance (LFR), and mathematical transformations of the original spectral reflectance (REF) were carried out to analyze the relevance of spectral reflectance and SOM content and extract the characteristic bands. Finally the simple linear regression (SLR), multiple stepwise linear regression (SMLR), and partial least squares regression (PLSR) models for SOM content estimation were established. The results showed that: (1) With the decrease of soil particle size, the spectral reflectance increased. The smaller the soil particle sizes, the more obvious was the increase in spectral reflectance. (2) The sensitive bands of SOM were mainly in the 580–690 nm range (correlation coefficient (R) > 0.6, p-value (p) < 0.01), and the spectral information of SOM could be significantly enhanced by first-order differential transformation. (3) Comparing the three models, PLSR had better estimation ability than SMLR and SLR. The precision of the 0.25 mm soil particle size and the LFR index in the PLSR estimation model of SOM content was the best (coefficient of determination of validation (Rv2) = 0.91, root mean square error of validation (RMSEv) = 13.41, the ratio of percent deviation (RPD) = 3.33). The results provide a basis for monitoring SOM content rapidly in the forests of Northwest Yunnan, and provide a reference for forest SOM estimation in other areas.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3