Reliability Improvement of a Hybrid Electric Vehicle Integrated Distribution System

Author:

Sripriya Ramalingam1,Kumar Chandrasekaran2ORCID,Xavier Felix Joseph3,Kumar Jeyaraj Senthil4,Kotsampopoulos Panos5ORCID,Fayek Hady H.6ORCID

Affiliation:

1. Department of Electrical Engineering, Annamalai University, Chidambaram 08002, India

2. Electrical and Electronics Engineering, M.Kumarasamy College of Engineering, Karur 639113, India

3. Electronics and Communication Engineering, Rohini College of Engineering and Technology, Kanyakumari 629401, India

4. Electrical and Electronics Engineering, Bannari Amman Institute of Technology, Erode 638401, India

5. School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece

6. Electromechanics Engineering Department, Faculty of Engineering, Heliopolis University, Cairo 11785, Egypt

Abstract

The recent trend in hybrid electric vehicles (HEV) has increased the need for vehicle charging stations (VCS) in the distribution system. In this condition, the additional load in the system leads to an increase in power loss, reduction in voltage and reliability of the system. The drawbacks of introducing this additional load can be rectified by integrating distributed generation (DG) into the distribution system. In this paper, the ideal location for placing DG is identified through the voltage stability index. The power loss minimization objective function is formulated with all the required constraints to estimate the size of DG required for the distribution system. Moreover, loss of load probability is used as a reliability assessment technique, through which the system reliability is analyzed after assessing the impact of integrating VCS and DG. Simulations are carried out to compare the following cases: a system without VCS and DG, a system that has only VCS and a system that has both VCS and DG. The IEEE 12-bus and 33-bus test systems are considered. In the 12-bus system with both VCS and DG, the power loss is reduced by 56% when compared with the system with only VCS, while the net reliability is also improved. The reliability of the system is evaluated for a 24 h load variation. The proposed work provides an efficient tool to improve the reliability of the system with support from DG.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3