Expression Pattern Analysis of Larch WRKY in Response to Abiotic Stress

Author:

Wang Chen,Zhao Qingrong,Zhang Lei,Zhang Hanguo

Abstract

Larix olgensis is one of the most common tree species in Northeast China; it has the advantages of fast growth and good wood properties. In order to accelerate larch molecular breeding and to provide good candidate genes for larch improvement, based on the existing transcriptome data of Larix olgensis, four WRKY family genes with complete CD regions were obtained by BLAST comparison on the NCBI website. The results of bioinformatics analysis and gene expression after abiotic stress showed that there were some differences in the expression of WRKY1, WRKY2, WRKY3 and WRKY4 in roots, stems and leaves under each treatment. Under the treatment of a 40% PEG6000 solution (polyethylene glycol), the expression of WRKY2 was significantly up-regulated in each time period and WRKY1, WRKY3 and WRKY4 were down-regulated in varying degrees compared with the control group, indicating that they were involved in the response to drought stress. Under the treatment of the 0.2mol/L NaCl solution, the expression of WRKY2 was up-regulated in roots, stems and leaves. The expression amount and the expression trend of the other three genes were different in roots, stems and leaves under different treatment durations, indicating that they were also involved in a salt-stress response. Under the treatment of the 0.1 mol/L NaHCO3 solution, the expression of WRKY4 was significantly down-regulated in all time periods, while WRKY2 was significantly up-regulated. The other two genes were regulated to a certain extent, indicating that they also had a physiological response under alkaline conditions. These results lay a foundation for the study of gene function of these four WRKY transcription factors.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Fundamental Research Funds for the Central Universities

Heilongjiang Touyan Innovation Team Program

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3