Rapid Estimation of Decameter FPAR from Sentinel-2 Imagery on the Google Earth Engine

Author:

Wang YitingORCID,Zhan Yinggang,Xie DonghuiORCID,Liu Jinghao,Huang Haiyang,Zhao Dan,Xiao Zihang,Zhou Xiaode

Abstract

As a direct indicator of vegetation photosynthesis, the fraction of absorbed photosynthetically active radiation (FPAR) serves as a critical input in a series of land surface models. While existing satellite FPAR products are generally at coarse resolutions ranging from 250 m to 1 km, operational FPAR products at fine resolution are urgently needed in studying land surface processes at the plot scale. However, existing methods for estimating fine-resolution FPAR were mainly designed for Landsat data, and few studies have attempted to develop algorithms for Sentinel-2 data. In particular, the operational estimation of decameter FPAR has a higher requirement for the algorithms in terms of generalizability, efficiency, accuracy, and adaptability to Sentinel-2 data. In this paper, we developed a retrieval chain on the Google Earth Engine (GEE) platform to estimate FPAR by learning the relationship between MODIS FPAR and Sentinel-2 surface reflectance. Scale-consistent multilinear models were used to model the relationship between MODIS FPAR and Sentinel-2 surface reflectance, and the model coefficients were regressed from the selected training samples. To account for the spectral and spatial characteristics of the Sentinel-2 data, we designed criteria for selecting training samples and compared different band combinations. Three strategies for band combination were used: (1) green, red, and near infrared (NIR) bands at 10 m resolution (i.e., three bands); (2) green, red, NIR, and red edge (RE) 1, RE2, and RE3 bands at 20 m resolution (i.e., five bands); and (3) green, red, NIR, RE1, RE2, RE3, shortwave infrared1 (SWIR1) and SWIR2 bands at 20 m resolution (i.e., eight bands). Meanwhile, the official Sentinel Application Platform (SNAP) method has also been implemented to estimate the Sentinel FPAR at 10 m and 20 m resolutions for comparison. Both methods were applied to the western Guanzhong area, Shaanxi Province, China, for FPAR estimation of all cloud-free Sentinel-2 images in 2021. The results show that the scaling-based method using five bands at 20 m resolution was the most accurate compared to the in situ measurements (RMSE = 0.076 and R² = 0.626), which outperformed the SNAP method at 10 m and 20 m resolutions and the scaling-based method using other strategies. The results of the scaling-based method using all three strategies were highly consistent with the MODIS FPAR product, while the SNAP method systematically underestimated FPAR values compared to the MODIS FPAR products. The proposed method is more ready-to-use and more efficient than SNAP software. Considering that the service of the MODIS sensor is overdue, the proposed method can be extended to alternatives to MODIS products, such as VIIRS and Sentinel-3 data.

Funder

National Natural Science Foundation of China

State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology

Xi’an University of Science and Technology

Open Fund of State Key Laboratory of Remote Sensing Science

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3