NTRK2 Promotes Sheep Granulosa Cells Proliferation and Reproductive Hormone Secretion and Activates the PI3K/AKT Pathway

Author:

Jia Yuhang12,Liu Yufang2ORCID,Wang Peng2,Liu Ziyi2,Zhang Runan2,Chu Mingxing2ORCID,Zhao Ayong1ORCID

Affiliation:

1. College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China

2. State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China

Abstract

Neurotrophin receptor B (NTRK2), also named TRKB, belongs to the neurotrophic factor family. Previous studies have shown that NTRK2 is associated with high fertility in mammals. However, the molecular mechanism and regulatory pathway of this neurotrophic factor remain unclear. In this study, NTRK2 overexpression and NTRK2-siRNA were constructed to detect the effects of NTRK2 on the proliferation and hormone secretion of the ovarian granulosa cells (GCs) of sheep. We successfully isolated follicular phase granulosa cells in vitro from the ovaries of sheep in simultaneous estrus, and the immunofluorescence results confirmed that NTRK2 was expressed in the collected cells. Subsequently, the effect of NTRK2 on the proliferation of sheep granulosa cells was examined via cell transfection experiments. The results showed that the expression of CDK4 and CyclinD2 was significantly increased after NTRK2 overexpression, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). The EdU and CCK-8 assays showed that the proliferation rate of sheep GCs was significantly increased after NTRK2 overexpression, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). Moreover, NTRK2 significantly increased the expression of steroidogenesis-related genes, including steroidogenic acute regulatory protein (STAR) and hydroxy-δ-5-steroid dehydrogenase (HSD3B1), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The ELISA results showed that the secretion levels of E2 and P4 significantly increased after NTRK2 overexpression, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). Previous studies had confirmed that NTRK2 gene belongs to the PI3K-AKT signaling pathway and participates in the signaling of this pathway. This was demonstrated by protein–protein interaction analysis and NTRK2 belongs to the PI3K-AKT pathway. The modification of PI3K and AKT, markers of the PI3K-AKT pathway, via phosphorylation was increased after NTRK2 overexpression in the sheep GCs, while the opposite trend was observed after the inhibition of NTRK2 expression (p < 0.05). Overall, these results suggest that the NTRK2 gene regulates the proliferation of GCs and the secretion of steroid hormones in sheep, and that it influences the phosphorylation level of the PI3K/AKT signaling pathway. These findings provided a theoretical basis and new perspectives for exploring the regulation of NTRK2 gene in the development of ovine follicles.

Funder

National Natural Science Foundation of China

Agricultural Science and Technology Innovation Program of China

China Agriculture Research System of MOF and MARA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3