Development and Evaluation of a Virtual Environment to Assess Cycling Hazard Perception Skills

Author:

van Paridon Kjell,Timmis Matthew A.ORCID,Sadeghi Esfahlani ShabnamORCID

Abstract

Safe cycling requires situational awareness to identify and perceive hazards in the environment to react to and avoid dangerous situations. Concurrently, tending to external distractions leads to a failure to identify hazards or to respond appropriately in a time-constrained manner. Hazard perception training can enhance the ability to identify and react to potential dangers while cycling. Although cycling on the road in the presence of driving cars provides an excellent opportunity to develop and evaluate hazard perception skills, there are obvious ethical and practical risks, requiring extensive resources to facilitate safety, particularly when involving children. Therefore, we developed a Cycling and Hazard Perception virtual reality (VR) simulator (CHP-VR simulator) to create a safe environment where hazard perception can be evaluated and/or trained in a real-time setting. The player interacts in the virtual environment through a stationary bike, where sensors on the bike transfer the player’s position and actions (speed and road positioning) into the virtual environment. A VR headset provides a real-world experience for the player, and a procedural content generation (PCG) algorithm enables the generation of playable artifacts. Pilot data using experienced adult cyclists was collected to develop and evaluate the VR simulator through measuring gaze behavior, both in VR and in situ. A comparable scene (cycling past a parked bus) in VR and in situ was used. In this scenario, cyclists fixated 20% longer at the bus in VR compared to in situ. However, limited agreement identified that the mean differences fell within 95% confidence intervals. The observed differences were likely attributed to a lower number of concurrently appearing elements (i.e., cars) in the VR environment compared with in situ. Future work will explore feasibility testing in young children by increasing assets and incorporating a game scoring system to direct attention to overt and covert hazards.

Funder

Chartered Institution of Highways and Transportation Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3