The Average Coding Length of Huffman Coding Based Signal Processing and Its Application in Fault Severity Recognition

Author:

Yin JianchengORCID,Lei Mingjia,Zheng Huailiang,Yang YuantaoORCID,Li Yuqing,Xu Minqiang

Abstract

The transient impact components in vibration signal, which are the major information for bearing fault severity recognition, are often interfered with by ambient noise. Meanwhile, for bearing fault severity recognition, the frequency band selection methods which are employed to pre-process the contaminated vibration signal only select the partial frequency band of the vibration signal and cause information loss of other frequency band. Aiming at this issue, this paper proposes a novel fault severity recognition method based on Huffman coding, which can retain all the information of the frequency band, and is applied for the first time to bearing fault severity recognition. Specifically, the average coding length of Huffman coding (ACLHC) of the original vibration signal is first calculated to reduce the noise and highlight the impact components of the signal. Then, the ACLHC is encoded by symbolic aggregate approximation (SAX) to reflect the modulation information of bearing. Finally, the Lempel‑Ziv indicator (LZ indicator) of the symbol sequence is calculated to reflect the fault severity. The proposed method is verified by the bearing datasets under different working conditions. Compared with the methods based on frequency band selection, the proposed method effectively recognizes the fault severity of bearing for more working conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3