Development of a CALPHAD Thermodynamic Database for Pu-U-Fe-Ga Alloys

Author:

Moore Emily E.,Turchi Patrice E.A.,Landa Alexander,Söderlind Per,Oudot Benoit,Belof Jonathan L.,Stout Stephen A.,Perron Aurélien

Abstract

The interaction of actinides and actinide alloys such as the δ-stabilized Pu-Ga alloy with iron is of interest to understand the impurity effects on phase stability. A newly developed and self-consistent CALPHAD thermodynamic database is presented which covers the elements: Pu, U, Fe, Ga across their whole composition and temperature ranges. The phase diagram and thermodynamic properties of plutonium-iron (Pu-Fe) and uranium-iron (U-Fe) systems are successfully reassessed, with emphasis on the actinide rich side. Density functional theory (DFT) calculations are performed to validate the stability of the stoichiometric (Pu,U)6Fe and (Pu,U)Fe2 compounds by computing their formation enthalpies. These data are combined to construct the Pu-U-Fe ternary phase diagram. The thermodynamic assessment of Fe-Ga is presented for the first time and application to the quaternary Pu-U-Fe-Ga system is discussed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How the Kondo effect stabilises delta-phase plutonium;Philosophical Magazine;2024-07-30

2. Gallium distribution between slag and metal phases during the carbothermal reduction of bauxite;Mineral Processing and Extractive Metallurgy: Transactions of the Institutions of Mining and Metallurgy;2024-07-25

3. Structural and magnetic properties of magnetostrictive Fe-Ga-Zr nanocrystalline alloy;Journal of Alloys and Compounds;2023-10

4. Enhanced magnetostriction through dilute Ce doping of Fe-Ga;Physical Review Materials;2023-01-17

5. Transmission electron microscopy characterization of the fuel-cladding chemical interactions in HT9 cladded U-10Zr fuel;Journal of Nuclear Materials;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3