Author:
He ,Jie ,Yang ,Han ,Zhang
Abstract
A subwavelength fine-structured silicon–gold metagrating was designed for realizing mid-infrared (mid-IR) narrowband absorbers. The metagrating consisted of a silicon grating on the stack of a gold film and a quartz substrate. The silicon grating consisted of two periodically arranged silicon strips in each unit cell. The numerical results reveal that perfect absorption of the traverse-magnetic (TM) polarized light at a wavelength of 4.071 μm can be achieved, with an absorption rate of ~99.2% and an absorption full-width at half-maximum (FWHM) bandwidth of ~31 nm. Thus, the proposed structure is useful for the spectral control of mid-IR signals. When used as a refractive index sensor, the structure has a measuring range of 1.0–2.0 with a quasi linear response, with a figure of merit (FOM) of ~103.
Funder
National Natural Science Foundation of China
Program for New Century Excellent Talents in University
China Postdoctoral Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献