Abstract
The simultaneous assessment of a great number of buildings subjected to different ground motions is a very challenging task. For this reason, a new computational integrated approach for seismic assessment of individual buildings is presented, which consists of several independent computer objects, each having its own user interface, yet being totally interconnectable like in a puzzle. The hazard module allows considering a code-based response spectrum or a predicted response spectrum for a given earthquake scenario, which is computed throughout the resolution of an optimization problem. The vulnerability of each building is assessed based on structural capacity curves. Damage is evaluated using an innovative proposal, which is to use what was called a performance curve associated with a capacity curve. This curve reproduces the percentage of a given response spectrum corresponding to a performance point for each displacement value of a capacity curve. Therefore, it becomes possible to do a very fast association of any limit state to a percentage of a seismic action. This approach was implemented in the PERSISTAH software, and the result outputs can be exported, instantaneously, to the Google Earth software throughout the creation of a kml file, or to MS Excel.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献