Abstract
Single image depth estimation works fail to separate foreground elements because they can easily be confounded with the background. To alleviate this problem, we propose the use of a semantic segmentation procedure that adds information to a depth estimator, in this case, a 3D Convolutional Neural Network (CNN)—segmentation is coded as one-hot planes representing categories of objects. We explore 2D and 3D models. Particularly, we propose a hybrid 2D–3D CNN architecture capable of obtaining semantic segmentation and depth estimation at the same time. We tested our procedure on the SYNTHIA-AL dataset and obtained σ3=0.95, which is an improvement of 0.14 points (compared with the state of the art of σ3=0.81) by using manual segmentation, and σ3=0.89 using automatic semantic segmentation, proving that depth estimation is improved when the shape and position of objects in a scene are known.
Funder
Consejo Nacional de Ciencia y Tecnología
Instituto Politécnico Nacional
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference38 articles.
1. Perception;Blake,2006
2. Perceiving in Depth, Volume 1: Basic Mechanisms;Howard,2012
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献