Removal Mechanisms of Slag against Potentially Toxic Elements in Soil and Plants for Sustainable Agriculture Development: A Critical Review

Author:

Mehmood SajidORCID,Wang Xiukang,Ahmed WaqasORCID,Imtiaz Muhammad,Ditta AllahORCID,Rizwan Muhammad,Irshad Sana,Bashir Saqib,Saeed Qudsia,Mustafa AdnanORCID,Li Weidong

Abstract

Potentially toxic element (PTE) pollution is a major abiotic stress, which reduces plant growth and affects food quality by entering the food chain, and ultimately poses hazards to human health. Currently, the use of slag in PTE-contaminated soils has been reported to reduce PTEs and toxicity in plants. This review highlights the role of slag used as a fertilizer for better crop production and sustainable agricultural development. The application of slag increased the growth, yield, and quality of crops under PTE toxicity. The mechanisms followed by slag are the immobilization of PTEs in the soil, enhancement of soil pH, changes in the redox state of PTEs, and positive changes in soil physicochemical and biological properties under PTE toxicity. Nevertheless, these processes are influenced by the plant species, growth conditions, imposition length of stress, and type of slag used. The current review provides an insight into improving plant tolerance to PTE toxicity by slag-based fertilizer application and highlights the theoretical basis for applying slag in PTE-contaminated environments worldwide.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3