Abstract
Complex systems consist of multiple machines that are designed with a certain extent of redundancy to control any unanticipated events. The productivity of complex systems is highly affected by unexpected simultaneous machine failures due to overrunning of machines, improper maintenance, and natural characteristics. We proposed realistic configurations with multiple machines having several flexibilities to handle the above issues. The objectives of the proposed model are to reduce simultaneous machine failures by slowing down the pace of degradation of machines, to improve the average occurrence of the first failure time of machines, and to decrease the loss of production. An approach has been developed using each machine’s degradation information to predict the machine’s residual life based on which the job adjustment strategy where machines with a lower health status will be given a high number of jobs to perform is proposed. This approach is validated by applying it in a fabric weaving industry as a real-world case study under different scenarios and the performance is compared with two other key benchmark strategies.
Funder
Statutory Body Established through an Act of Parliament: SERB Act 2008, Government of India
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献