Characterization and Thermal Behavior Study of Biomass from Invasive Acacia mangium Species in Brunei Preceding Thermochemical Conversion

Author:

Ahmed AshfaqORCID,Bakar Muhammad S. AbuORCID,Razzaq Abdul,Hidayat SyarifORCID,Jamil Farrukh,Amin Muhammad Nadeem,Sukri Rahayu S.,Shah Noor S.,Park Young-Kwon

Abstract

Acacia mangium is a widely grown tree species across the forests in Brunei Darussalam, posing a threat to the existence of some native species in Brunei Darussalam. These species produce large quantities of lignocellulosic biomass from the tree parts comprising the phyllodes, trunk, bark, twigs, pods, and branches. This study examined the thermochemical characteristics and pyrolytic conversion behavior of these tree parts to assess the possibility of valorization to yield bioenergy. Proximate, ultimate, heating value, and Fourier Transform Infrared Spectroscopy (FTIR) analyses were performed to assess the thermochemical characterization, while thermogravimetric analysis was conducted to examine the pyrolytic degradation behavior. Proximate analysis revealed a moisture content, volatile, fixed carbon, and ash contents of 7.88–11.65 wt.%, 69.82–74.85 wt.%, 14.47–18.31 wt.%, and 1.41–2.69 wt.%, respectively. The heating values of the samples were reported in a range of 19.51–21.58 MJ/kg on a dry moisture basis, with a carbon content in the range of 45.50–50.65 wt.%. The FTIR analysis confirmed the heterogeneous nature of the biomass samples with the presence of multiple functional groups. The pyrolytic thermal degradation of the samples occurred in three major stages from the removal of moisture and light extractives, hemicellulose and cellulose decomposition, and lignin decomposition. The bio-oil yield potential from the biomass samples was reported in the range of 40 to 58 wt.%, highlighting the potential of Acacia mangium biomass for the pyrolysis process.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3