The Influence of the Configuration of Two Electrochemical Reactors on the Process of Removing Atrazine from Water

Author:

Nápoles-Armenta JuanORCID,Vidales-Contreras Juan Antonio,Leyva-Soto Luis Alonso,Meza-Escalante Edna RosalbaORCID,Díaz-Tenorio Lourdes Mariana,García-Gómez CelestinoORCID,Martínez-Orozco EdgardoORCID,De La Mora-Orozco CeliaORCID,Gortáres-Moroyoqui PabloORCID,Salcedo-Gastelum Lilian Alejandra

Abstract

In Mexico, atrazine is widely used in agriculture to control broadleaf weeds. The objective of this research was to compare atrazine removal in water and energy consumption between an up-flow cylinder electro-oxidation reactor (UCER) and an up-flow rectangular electro-oxidation reactor (URER) using the response surface methodology. In each reactor, two titanium (Ti) mesh electrodes (cathodes) and one Titanium-Lead Dioxide (Ti-PbO2) mesh electrode (anode). Current intensity effects, electrolysis treatment time, and recirculation flow were evaluated. Synthetic water with 5 mg/L atrazine content was used. Optimum atrazine removal values were obtained at 2 A electric current, 180 min of treatment time, and 200 mL/min recirculation rate for both reactors: in these conditions an atrazine removal of 77.45% and 76.89% for URER and UCER respectively. However, energy consumption showed a significant difference of 137.45 kWh/m3 for URER and 73.63 kWh/m3 for UCER. Regarding energy efficiency, a 60% atrazine removal was reached in both reactors using less energy for UCER at (1.5 A–135 min–150 mL/min–25.8 kWh/m3) and for URER at (0.66 A–135 min–150 mL/min–20.12 kWh/m3).

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3