Pancreas Rejection in the Artificial Intelligence Era: New Tool for Signal Patients at Risk

Author:

Vigia Emanuel12ORCID,Ramalhete Luís234ORCID,Ribeiro Rita2,Barros Inês1,Chumbinho Beatriz1,Filipe Edite1,Pena Ana1,Bicho Luís1,Nobre Ana1,Carrelha Sofia1,Sobral Mafalda1,Lamelas Jorge1,Coelho João Santos1,Ferreira Aníbal45,Marques Hugo Pinto12ORCID

Affiliation:

1. Hepatobiliopancreatic and Transplantation Center, Curry Cabral Hospital, Centro Hospitalar Universitário de Lisboa Central, R. da Beneficência 8, 1050-099 Lisbon, Portugal

2. Nova Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal

3. Blood and Transplantation Center of Lisbon, Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, n 117, 1769-001 Lisbon, Portugal

4. iNOVA4Health, Advancing Precision Medicine, RG11, Reno-Vascular Diseases Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal

5. Nephrology, Hospital Curry Cabral, Centro Hospitalar Universitário de Lisboa Central, R. da Beneficência 8, 1050-099 Lisbon, Portugal

Abstract

Introduction: Pancreas transplantation is currently the only treatment that can re-establish normal endocrine pancreatic function. Despite all efforts, pancreas allograft survival and rejection remain major clinical problems. The purpose of this study was to identify features that could signal patients at risk of pancreas allograft rejection. Methods: We collected 74 features from 79 patients who underwent simultaneous pancreas–kidney transplantation (SPK) and used two widely-applicable classification methods, the Naive Bayesian Classifier and Support Vector Machine, to build predictive models. We used the area under the receiver operating characteristic curve and classification accuracy to evaluate the predictive performance via leave-one-out cross-validation. Results: Rejection events were identified in 13 SPK patients (17.8%). In feature selection approach, it was possible to identify 10 features, namely: previous treatment for diabetes mellitus with long-term Insulin (U/I/day), type of dialysis (peritoneal dialysis, hemodialysis, or pre-emptive), de novo DSA, vPRA_Pre-Transplant (%), donor blood glucose, pancreas donor risk index (pDRI), recipient height, dialysis time (days), warm ischemia (minutes), recipient of intensive care (days). The results showed that the Naive Bayes and Support Vector Machine classifiers prediction performed very well, with an AUROC and classification accuracy of 0.97 and 0.87, respectively, in the first model and 0.96 and 0.94 in the second model. Conclusion: Our results indicated that it is feasible to develop successful classifiers for the prediction of graft rejection. The Naive Bayesian generated nomogram can be used for rejection probability prediction, thus supporting clinical decision making.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3