Impact of Transgenic Arabidopsis thaliana Plants on Herbicide Isoproturon Phytoremediation through Expressing Human Cytochrome P450-1A2

Author:

Azab EhabORCID,Hegazy Ahmad K.,Gobouri Adil A.,Elkelish AmrORCID

Abstract

The excessive use of herbicides is a major cause of many environmental problems. The use of isoproturon herbicide as a weed controller has been a common practice globally. Phytoremediation technology can help in cleaning up polluted areas. In this paper the ability of CYP1A2 transgenic A. thaliana plants in the phytoremediation of isoproturon herbicides has been investigated. We tested the capability of P450-1A2 overexpression on the detoxification and degradation of isoproturon. We explored the toxic effect of isoproturon on the plant phenotypic characteristics, including the primary root length, rosette diameter, and fresh, dry weight for transgenic and wild type A. thaliana. The results revealed that no morphological changes appeared on CYP1A2 transgenic plants with a high tolerance to isoproturon herbicide applications either via foliar spraying or supplementation of the growth medium. Deleterious effects were observed on the morphological characteristics of plants of the wild type grown in soil under different treatments with isoproturon. The transgenic A. thaliana plants exhibited a vigorous growth even at high doses of isoproturon treatments. In contrast, the growth of the wild type was significantly impaired with doses above 50 µM isoproturon. The transgenic A. thaliana plants expressing P450-1A2 were able to metabolize the phenylurea herbicide isoproturon. Therefore, this method can be determined as a potential bioremediation agent.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Roles of mycorrhizal fungi in phytoremediation of contaminated eco-systems;New Zealand Journal of Botany;2024-03-13

2. Designing crops for adaptation to polluted land;Designer Cropping Systems for Polluted Land;2024

3. The agricultural extensification on polluted lands;Designer Cropping Systems for Polluted Land;2024

4. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: a timely review;Environmental Science and Pollution Research;2023-12-14

5. Synthetic biology tools for environmental protection;Biotechnology Advances;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3