Characterizing the Efficacy of a Film-Forming Antitranspirant on Raspberry Foliar and Fruit Transpiration

Author:

Moroni Francesca J.,Gascon-Aldana Pedro J.,Rogiers Suzy Y.ORCID

Abstract

The film-forming antitranspirant, di-1-p-menthene, is able to reduce transpiration in a number of crops, potentially resulting in water savings and improved productivity. The success of the response is, however, dependent on genotype and environmental factors. We aimed to assess the efficacy of this natural terpene polymer on red raspberry (Rubus idaeus, L.) cv. Tulameen leaf water-use efficiency across a 25–40 °C temperature range under controlled conditions. The film reduced transpiration (E) and was most effective when applied to the lower leaf surface. Leaf net assimilation (A) and stomatal conductance (g) were also curtailed after the application of di-1-p-menthene, and as a consequence intrinsic transpiration efficiency (A/g) and instantaneous transpiration efficiency (ratio of net carbon fixation to water loss, A/E) did not improve. At 40 °C, gas exchange of both treated and untreated leaves was minimal due to stomatal closure. The antitranspirant was effective at reducing water loss from berries, but only at the immature stages when transpiration rates were naturally high. Further studies are required to determine if the antitranspirant, di-1-p-menthene, will offer protection against dehydration across a range of temperatures and if productivity and berry composition will benefit.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference39 articles.

1. Raspberry breeding and protection against disease and pests;Totic;Bulg. J. Agric. Sci.,2014

2. Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars

3. Cultivar differences in carbon assimilation and partitioning of primocane-fruiting raspberry;Percival;J. Am. Pomol. Soc.,2001

4. The Effect of Temperature, Photosynthetic Photon Flux Density, and Photoperiod on the Vegetative Growth and Flowering of `Autumn Bliss' Raspberry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3