Inverted Covariate Effects for First versus Mutated Second Wave Covid-19: High Temperature Spread Biased for Young

Author:

Seligmann Hervé,Iggui Siham,Rachdi Mustapha,Vuillerme NicolasORCID,Demongeot Jacques

Abstract

(1) Background: Here, we characterize COVID-19’s waves, following a study presenting negative associations between first wave COVID-19 spread parameters and temperature. (2) Methods: Visual examinations of daily increases in confirmed COVID-19 cases in 124 countries, determined first and second waves in 28 countries. (3) Results: The first wave spread rate increases with country mean elevation, median population age, time since wave onset, and decreases with temperature. Spread rates decrease above 1000 m, indicating high ultraviolet lights (UVs) decrease the spread rate. The second wave associations are the opposite, i.e., spread increases with temperature and young age, and decreases with time since wave onset. The earliest second waves started 5–7 April at mutagenic high elevations (Armenia, Algeria). The second waves also occurred at the warm-to-cold season transition (Argentina, Chile). Second vs. first wave spread decreases in most (77%) countries. In countries with late first wave onset, spread rates better fit second than first wave-temperature patterns. In countries with ageing populations (for example, Japan, Sweden, and Ukraine), second waves only adapted to spread at higher temperatures, not to infect the young. (4) Conclusions: First wave viruses evolved towards lower spread. Second wave mutant COVID-19 strain(s) adapted to higher temperature, infecting younger ages and replacing (also in cold conditions) first wave COVID-19 strains. Counterintuitively, low spread strains replace high spread strains, rendering prognostics and extrapolations uncertain.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3