Genome-Scale Metabolic Reconstruction and in Silico Perturbation Analysis of the Polar Diatom Fragilariopsis cylindrus Predicts High Metabolic Robustness

Author:

Lavoie Michel,Saint-Béat Blanche,Strauss JanORCID,Guérin Sébastien,Allard Antoine,V. Hardy SimonORCID,Falciatore Angela,Lavaud JohannORCID

Abstract

Diatoms are major primary producers in polar environments where they can actively grow under extremely variable conditions. Integrative modeling using a genome-scale model (GSM) is a powerful approach to decipher the complex interactions between components of diatom metabolism and can provide insights into metabolic mechanisms underlying their evolutionary success in polar ecosystems. We developed the first GSM for a polar diatom, Fragilariopsis cylindrus, which enabled us to study its metabolic robustness using sensitivity analysis. We find that the predicted growth rate was robust to changes in all model parameters (i.e., cell biochemical composition) except the carbon uptake rate. Constraints on total cellular carbon buffer the effect of changes in the input parameters on reaction fluxes and growth rate. We also show that single reaction deletion of 20% to 32% of active (nonzero flux) reactions and single gene deletion of 44% to 55% of genes associated with active reactions affected the growth rate, as well as the production fluxes of total protein, lipid, carbohydrate, DNA, RNA, and pigments by less than 1%, which was due to the activation of compensatory reactions (e.g., analogous enzymes and alternative pathways) with more highly connected metabolites involved in the reactions that were robust to deletion. Interestingly, including highly divergent alleles unique for F. cylindrus increased its metabolic robustness to cellular perturbations even more. Overall, our results underscore the high robustness of metabolism in F. cylindrus, a feature that likely helps to maintain cell homeostasis under polar conditions.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3