Abstract
This study evaluated the effects of the application of microbial inoculants (N-fixing Klebsiella planticola and Enterobacter spp.), two rates of composite mineral fertilizers, and their combination on microbial biomass carbon (MBC), dehydrogenase (DHA), and proteinase activity (PTA) in Lessivated Cambisol and yield-related properties of maize and wheat grains in a two-year trial. Unfertilized soil was used as a control variant. MBC was measured using the chloroform fumigation-extraction method, DHA was determined spectrophotometrically by measuring the intensity of the formed red-colored triphenyl formazan, while PTA was determined using a titration method by measuring the degree of gelatine decomposition. In grain samples, P was determined spectrophotometrically, K—by flame emission photometry, N—on an elemental carbon/nitrogen/sulfur (CNS) analyzer, and crude proteins—by calculation of N content. Measuring both crops’ yield was carried out at the end of the vegetation. The results indicated that mineral fertilizers are not, in general, negative for soil microbiota when used in the context of sustainable agriculture without monoculture. There is a significant increase in the values of soil MBC, DHA, and PTA in the variants with combined application of bacterial inoculants and lower rates of mineral fertilizers. The highest values of these parameters were determined in the period with a better distribution of precipitation during the vegetation period of the year. The mentioned combination also resulted in a higher grain yield of maize and wheat comparing to the application of lower rates of the NPK nutrients solely. The combined application of high rates of mineral fertilizers and bacterial inoculants resulted in significantly increased N, P, K, and protein content in the grains of crops, and the same applied to yield. Concluding, studied bacterial inoculants can be used to specify the replacement of nitrogen fertilizers, stimulating the microbial biomass and enzyme activity in the soil, helping to ensure that the supply of nutrients contributing to an optimized yield of crops is maintained.
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献