Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis

Author:

Li Zhi-Jun,Chen Wei-Gen,Shan Jie,Yang Zhi-Yong,Cao Ling-Yan

Abstract

To improve the reliability and accuracy of a transformer fault diagnosis model based on a backpropagation (BP) neural network, this study proposed an enhanced distributed parallel firefly algorithm based on the Taguchi method (EDPFA). First, a distributed parallel firefly algorithm (DPFA) was implemented and then the Taguchi method was used to enhance the original communication strategies in the DPFA. Second, to verify the performance of the EDPFA, this study compared the EDPFA with the firefly algorithm (FA) and DPFA under the test suite of Congress on Evolutionary Computation 2013 (CEC2013). Finally, the proposed EDPFA was applied to a transformer fault diagnosis model by training the initial parameters of the BP neural network. The experimental results showed that: (1) The Taguchi method effectively enhanced the performance of EDPFA. Compared with FA and DPFA, the proposed EDPFA had a faster convergence speed and better solution quality. (2) The proposed EDPFA improved the accuracy of transformer fault diagnosis based on the BP neural network (up to 11.11%).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3